首页> 外文OA文献 >Phase I dynamics of cardiac output, systemic O2 delivery, and lung O2 uptake at exercise onset in men in acute normobaric hypoxia
【2h】

Phase I dynamics of cardiac output, systemic O2 delivery, and lung O2 uptake at exercise onset in men in acute normobaric hypoxia

机译:急性常压性缺氧男性运动时心输出量,全身性O2传递和肺O2吸收的I期动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We tested the hypothesis that vagal withdrawal plays a role in the rapid (phase I) cardiopulmonary response to exercise. To this aim, in five men (24.6+/-3.4 yr, 82.1+/-13.7 kg, maximal aerobic power 330+/-67 W), we determined beat-by-beat cardiac output (Q), oxygen delivery (QaO2), and breath-by-breath lung oxygen uptake (VO2) at light exercise (50 and 100 W) in normoxia and acute hypoxia (fraction of inspired O2=0.11), because the latter reduces resting vagal activity. We computed Q from stroke volume (Qst, by model flow) and heart rate (fH, electrocardiography), and QaO2 from Q and arterial O2 concentration. Double exponentials were fitted to the data. In hypoxia compared with normoxia, steady-state fH and Q were higher, and Qst and VO2 were unchanged. QaO2 was unchanged at rest and lower at exercise. During transients, amplitude of phase I (A1) for VO2 was unchanged. For fH, Q and QaO2, A1 was lower. Phase I time constant (tau1) for QaO2 and VO2 was unchanged. The same was the case for Q at 100 W and for fH at 50 W. Qst kinetics were unaffected. In conclusion, the results do not fully support the hypothesis that vagal withdrawal determines phase I, because it was not completely suppressed. Although we can attribute the decrease in A1 of fH to a diminished degree of vagal withdrawal in hypoxia, this is not so for Qst. Thus the dual origin of the phase I of Q and QaO2, neural (vagal) and mechanical (venous return increase by muscle pump action), would rather be confirmed.
机译:我们测试了迷走神经戒断在运动的快速(I期)心肺反应中起作用的假设。为此,在五名男性(24.6 +/- 3.4岁,82.1 +/- 13.7千克,最大有氧功率330 +/- 67瓦)中,我们确定了逐搏心输出量(Q),氧气输送量(QaO2 ),以及在常氧和急性缺氧(吸入O2的分数= 0.11)进行的轻度锻炼(50和100 W)下的逐呼吸肺氧吸收(VO2),因为后者会降低静息迷走神经活动。我们根据中风量(Qst,通过模型流量)和心率(fH,心电图)计算Q,并根据Q和动脉O2浓度计算QaO2。将双指数拟合到数据。与正常氧相比,在缺氧状态下,稳态fH和Q较高,而Qst和VO2不变。 QaO2静止不动,运动时降低。在瞬变期间,VO2的I相(A1)幅度不变。对于fH,Q和QaO2,A1较低。 QaO2和VO2的I相时间常数(tau1)不变。 Q在100 W时的情况和fH在50 W时的情况相同。Qst动力学不受影响。总之,结果并未完全支持迷走神经撤退决定I期的假设,因为迷走神经撤退并未得到完全抑制。尽管我们可以将fH的A1降低归因于缺氧时迷走神经退缩的程度降低,但对于Qst并非如此。因此,宁可确定Q和QaO2 I相的双重起源,神经性(迷走神经)和机械性(通过肌肉泵动作增加静脉回流)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号